

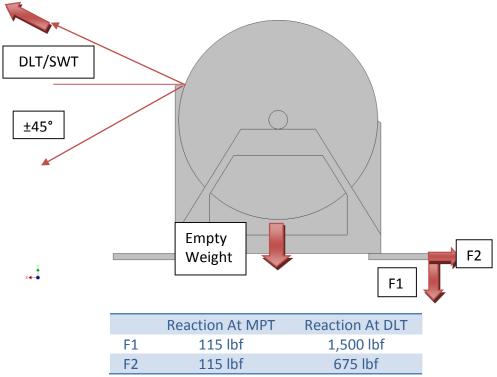
MS #17, 266 Woods Hole Road, Woods Hole, MA 02543 jeaton@whoi.edu http://winchpool.whoi.edu Office: 508.289.2672

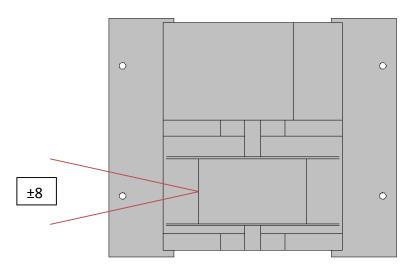
Maximum Capability Document

Seamac 207EH

This document has been prepared in accordance with Appendices A & B from the UNOLS RVSS. This machine is primarily used for 0.25 tension members, with a 5,000 lbf breaking strength. Per Appendix A, the machine in its' current configuration is limited to a Factor of Safety (FS) of 5.0 on the tension member due to the lack of cable monitoring system. The FS on the tension member could be lowered if a monitored over-boarding block is employed in accordance with Appendix A. Per Appendix B this machine is rated for "Lifting & Towing - Mid Water" as currently configured due to the lack of load limiting equipment; this strictly limits tension member deployed length to 75% of water depth. This machine could be rated for "Lifting and Towing - Deep Water" with if proper load limiting equipment were employed per Appendix B.

System Characterizations


Empty Weight	1,500 lbf	
Maximum Weight	2,500 lbf	
Maximum Pull at Bottom Layer / SWT	1,200 lbf	
Maximum Continuous Allowed Structure Load / DLT	3,800 lbf	
Maximum Speed at Bottom Layer	40 m/min	
Maximum Oil Operating Temperature	180 F	
Power Requirements	3 Phase 480VAC 60 Hz	
	20 Amp Circuit	



MS #17, 266 Woods Hole Road, Woods Hole, MA 02543 jeaton@whoi.edu http://winchpool.whoi.edu Office: 508.289.2672

Free Body Diagram

Forces are maximum forces per bolt, at SWT & DLT, for a 4 bolt hold down pattern (Rows spaced at 48"). Analysis is good for a vertical fleet angle of $\pm 45^{\circ}$ and a horizontal fleet angle of $\pm 8^{\circ}$.

